Importing the ALICE ITS staves into sSPHENIX

Tony Frawley
FSU
Simulations meeting, April 5, 2016

Importing the ALICE ITS staves into sSPHENIX

Following the effort by Kun, Jin and Darren to make a .gdml file that
can be imported into the sPHENIX G4 simulation, | have been
working on the necessary simulations code to use it.

The code is (will be) at:
[coresoftware/simulation/g4simulation/g4detectors/
PHG4MapsSubsystem.(h,cc)
G4MapsDetector.(h,cc)
G4MapsSteppingAction.(h,cc)
G4CylinderGeom_MAPS.(h,cc)
G4CylinderCell_MAPS.(h,cc)
G4MapsCellReco.(h,cc)
G4CylinderCellGeom.(h,cc)
/macros/macros/g4simulations/
G4_ITS_MAPS.C

J U U U U U

We import only the staves

The idea is to import the staves for each layer into the sPHENIX
simulation setup, and position them by specitying:

e | ayer radius
e Number of staves per layer (implies ¢ angle step)

e |[f the radius changes, use the same arc length as in the ITS
e Stave tilt (my guess for now)

It Is really that simple.

The next tew slides show some end-views of the resulting tracker,
with a single electron thrown in each case

These are for the nominal radii used in the ITS:
double maps_layer_radius[7] = {23.0, 31.0, 39.0, 194.0, 247.0, 353.0, 405.0}; // mm

The ALICE ITS staves in sSPHENIX

viewer-0 (OpenGLStoredX) (on rcas2072.rcf.bnl.gov)

wley@rcas2069:g4detectors

The ALICE ITS staves in sSPHENIX

viewer-0 (OpenGLStoredX) (on rcas2072.rcf.bnl.gov)

The ALICE ITS staves in sSPHENIX

=) viewer-0 (OpenGLStoredX) (on rcas2072.rcf.bnl.gov) i Ll

The ALICE ITS staves in sSPHENIX

viewer-0 (OpenGLStoredX) (on rcas2072.rcf.bnl.gov) L]

The ALICE ITS staves in sSPHENIX

2l viewer-0 (OpenGLStoredX) (on rcas2072.rcf.bnl.gov) - 0O x

ley@rcas2069:g4detectors

The ALICE ITS staves in sPHENIX

= viewer-0 (OpenGLStoredX) (on rcas2072.rcf.bnl.gov) o [R

ley@rcas2069:g4detectors
9

Stave tilt angle

The tilt angle used for the inner barrel is 0.25 radians (from eye-

balling the display - we need to find out what tilt ALICE is planning
to use).

The tilt angle for layers 3-6 is zero at present, but it you look
carefully at the display, some tilt may be better.

| have not checked for overlaps vyet.

10

its storage
| have implemented the hits in PHG4Hit:

UserSteppingAction: layer 6 chip 9 module 3 stave 22 half_stave 0 edep = 3.61892e-06
Particle: e-
stepping action found hit:
New Hitv1 0x600000000000002 on track 1 EDep 3.61892e-06
Location: X -35.5215/-35.5231 Y 14.856/14.8567 Z 4.339/4.33915
Time 1.28876/1.28882

10: pxin= -8.25659

11: pxout = -8.256061

12 pyin= 3.53841

13: py out = 3.53835

14: pzin= 0.745312

15: pz out = 0.745372

101:layer ID = ©

114:stave index = 22

115:half stave index = 0

116:module index = 3

117:chip index = 9

118:local x pos in = -0.403366

119:local y pos in = 0.0009

120:local z posin = -1.329

125:local x pos out = 1.15834
126:1local y pos out = 0.005
127:local z pos out = 4.33915

11

The geometry object

The geometry object is not finished yet.

At present, the hits object records:
e Stave number
e Half-stave number
e Module number
e Chip number
where chip number is equivalent to sensor number (they are 1-1).

But the simulation does not include the pixels. Initially at least, we
will determine the hit pixel positions from:
e The address of the sensor => sensor center
e The positions of the entry and exit hit positions in local
coordinates => location of hit relative to sensor center

This is still to be implemented.

12

11D

Finish the geometry object
Digitization

Apply dead areas
Clustering

Tracking

13

